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1 Introduction

Differential forms have wide applications in many fields, such as tensor analysis, potential
theory, partial differential equations and quasiregular mappings, see [1-7]. Different versions
of the classical Poincaré inequality have been established in the study of the Sobolev space
and differential forms, see [2,6,8]. Susan G. Staples proves the Poincaré inequality in L*-
averaging domains in [8]. Tadeusz Iwaniec and Adam Lutoborski prove a local Poincaré-type
inequality (see Lemma 2.2) in [6], which plays a crucial rule in generalizing the theory of
Sobolev functions to differential forms. In this paper we prove local weighted Poincaré-type
inequalities for differential forms in any kind of domains, and the global weighted Poincaré-type
inequalities for differential forms in John domains and in L®(u)-averaging domains, where pu
is a measure defined by du = w(x)dx and w € A,.. As we know, A-harmonic tensors are the

special differential forms which are solutions to the A-harmonic equation for differential forms:
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d*A(z,du) = 0, where A : Q x Al(R") — A(R") is an operator satisfying some conditions, see
[5,6,9]. Thus, all of the results about differential forms in this paper remain true for A-harmonic
tensors. Therefore, our new results concerning differential forms are of interest in some fields,
such as those mentioned above.

Throughout this paper, we always assume ) is a connected open subset of R™. Let
e1,€s,...,¢e, denote the standard unit basis of R®. For [ = 0,1,...,n, the linear space of
l-vectors, spanned by the exterior products e = e;; Ae;, A---e;,, corresponding to all ordered
I-tuples I = (i1,d9,...,4;), 1 < i1 < iy < --- < iy < n, is denoted by Al = A/(R™). The
Grassmann algebra A = @A is a graded algebra with respect to the exterior products. For
a =Y ale; € Aand B = Y Ble; € A, the inner product in A is given by (a, 3) = > alg!
with summation over all I-tuples I = (i1,1432,...,4;) and all integers [ = 0,1,...,n. We de-
fine the Hodge star operator x: A — A by the rule x1 = e; Aea A--- Ae, and a A x0 =
B A*a = (o, 8)(*1) for all a, 8 € A. Hence the norm of a € A is given by the formula
la|? = (o, a) = x(a Axa) € A® = R. The Hodge star is an isometric isomorphism on A with
*x: A= A" hand x x (—1)1("_” : Al — AL Letting 0 < p < oo, we denote the weighted
LP-norm of a measurable function f over E by ||f||,.z.w = (/5 |f(2)[Pw(z)dz) p

As we know, a differential I-form w on Q is a Schwartz distribution on 2 with values in
AY(R™). In particular, for [ = 0, w is a real function or a distribution. We denote the space
of differential I-forms by D'(, Al). We write LP(Q, A') for the I-forms w(z) =Y, wr(z)dz; =
SN Wirigeiy (T)dziy AdTiy A- - - Ady, with wr € LP(Q, R) for all ordered I-tuples I. Thus LP(£2, Al)
is a Banach space with norm |||, 0 = ([, |w(x)|pdm)1/p = (Jo () lwr(2)[?)P/2dz) VP Sim-
ilarly, W, (€, A') are those differential I-forms on Q whose coefficients are in W, (€2, R). The
notations W), (92, R) and W,
tive by d : D'(Q,AY) — D'(Q,AHL) for I = 0,1,---,n. Its formal adjoint operator
d*: D'(Q,A"FY) — D'(Q,AY) s given by d* = (—=1)"*xdx on D'(Q, A1) 1=0,1,---,n.

We write R = R'. Balls are denoted by B, and ¢B is the ball with the same center as

B and with diam(cB) = odiam(B). The n-dimensional Lebesgue measure of a set E C R" is

(2, A) are self-explanatory. We denote the exterior deriva-

denoted by |E|. We call w a weight if w € L{, (R") and w > 0 a.e. Also in general du = wdx
where w is a weight. The following result appears in [6]: Let @ C R™ be a cube or a ball.
To each y € @ there corresponds a linear operator K, : C®(Q,A!) — C=(Q,A"1) defined
by (Kyw)(x;&1,...,&) = fol = w(te +y — ty; — y,&1,- -+, &-1)dt and the decomposition
w = d(Kyw) + Ky(dw).

We define another linear operator Tg : C%°(Q,Al) — C>=(Q,A!"1) by averaging K, over
all points y in Q: Tow = fQ o(y)Kywdy where ¢ € C§°(Q) is normalized by fQ o(y)dy = 1.
We define the I-form wg € D'(Q, A!) by wg = |Q|~! fQ w(y)dy, 1 =0, and wg = d(Tgw), I =
1,2,...,n, for all w € LP(Q,A!), 1 < p < o0.

The following generalized Holder’s inequality will be used repeatedly.

Lemma 1.1 Let0<a<oo, 0< <00 and s ' =a '+ 371 If f and g are measurable

functions on R™, then || fg ||ls,0<|l f |

a0 |l 9 llga for any @ C R™.

Definition 1.1  We say the weight w(x) > 0 satisfies the A,.-condition, where r > 1, and
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write w € A, if supB(ﬁ I wdx)(ﬁ [ w1 dz) =t < oo for any ball B C R™.
We also need the following lemma [10].

Lemma 1.2 Ifw € A,, then there exist constants > 1 and C, independent of w, such that
| w [|p.o< ClQIAP/B || w ||1.q for any cube or any ball Q C R™.

2 Local Weighted Poincaré-Type Inequalities

The following version of the Poincaré inequality appears in [9].

Lemma 2.1  Let u € D'(Q,A') and du € LP(Q,AN'"T). Then u — uq is in W} (Q,A') with
1 < p < oo and |lu—uglpqo < C(n,p)|QI"||dullp.q for Q a cube or a ball in R™, 1 =0,1,...,n.

T. Iwaniec and A. Lutoborski prove the following Poincaré-type inequality in [6].

Lemma 2.2 Let u € D'(Q,A') and du € LP(Q,AN"*1). Then u — ug is in L™/ ("=P)(Q, A!)
and ([ lu — ug|™?/ (=P dz)(n=p)/mr < Cp(n)(Jq |du[Pdz)Y/P for Q a cube or a ball in R™,
[=0,1,....nand 1 <p<n.

We now prove the following version of the local weighted Poincaré-type inequality for dif-

ferential forms.

Theorem 2.1 Letu € D'(B,A") and du € LP(B, AN"*1), where 1 < p < 0o andl=0,1,...,n.
If w € Ayyy for any A > 0, then there exist constants C, independent of u and du, and 3 > 1
such that for any o with 1 < o < 8 and (o — 1)p > 3, we have

1 1/s 1 1/p
<E/B|u—uBswdm> < C|B|V™ (E/B|du|pwp/sdx> (2.1)

for all balls B C R"™. Here s =p(a—1)/p.

Proof Since w € Aj1y, by Lemma 1.2, there exist constants § > 1 and C; > 0, such that
lw llg.8< CLIBIYP/P w15 (2.2)

for any cube or any ball B C R"™. Choose t = sG/(8 —1); then 1 < s <t and §=1t/(t — s).
Since 1/s = 1/t + (t — s)/st, by Holder’s inequality, Lemma 2.1 and (2.2), we have

) 1/s
uw—ugl|ls Bw = u—uglw'/* sd:c
[ Ils,B, ; | \
l/t st/(t—s) (t*S)/St
< (/ |u—uB|tdx> (/ (wl/s) dx)
B B
(t—s)/st
= |lu—uples - (/ wt/(t—S)dx>
B
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< Co| B|SP55 w5 - flu — upe s
< Co|B|P/B2| |||}/ - O3] BIY ™| dull o,
= Cy|B["|B|/5 lw||}5 - dulle, 5. (2.3)

Now t =s8/(8—1) < s8/(a—1) =pand 1/t = 1/p+ (p — t)/pt, and by Holder’s inequality

again we obtain
/t . 1/t
|du| dx) = (/ <|du|w1/sw71/s> da:)
B

1/p 1 pt/s(p—t) (p—t)/pt
( |du|wt/® dx) (/ (E) dx)
B
1/p 1\ Pt/s(p=1) (p—t)/pt
(s (L") e
B

Combining (2.3) and (2.4) yields

I dulle.

IN

= s, < Cal BI85 o[V (1)

1/p
|du|pwp/°da: . (2.5)
pt/(p—t),

Choose A > 0 such that A <1 —«a/8. Then 14+ A <2 —a/f =r. Hence w € A;1y C A,. By
simple computation we know that s(p —¢)/pt = (2 — «/B8) — 1 =r — 1. Thus, we have

w3 - (17w

pt/(p—t),B

1/s 1 pt/s(p—t) (p—t)/pt
(/ wda:> /<) dx
B B \W
1 pt/s(p—t) s(p—t)/pt
(/ wdaz) /(—) dz
B B \W
1/s pt/s(p—t)
<|B|1+S(P7t)/pt) i/ wdx L/ l dx
|B| B ‘Bl B \W
1 r—1 1/s
1 1 1\ 71
— | B|\/s+1/t=1/p (_/ wdm) _/ <_) i

< C5|B|Y/s+/t=1p, (2.6)

1/s

s(p—t)/pt\ 1/*

Substituting (2.6) in (2.5) implies

1/p
§06|B|1/”+1/51/P</ |du|pwp/8dx> : (2.7)
B

We can write (2.7) as (ﬁ [ lu—up|*w(z)dzx)t/* < C’|B|1/”(% [ |du|Pw?/*dz)/P. This com-
pletes the proof of Theorem 2.1.
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We now prove another version of the local weighted Poincaré-type inequality for differential

forms.

Theorem 2.2 Let u € D'(B,A!) and du € L"(B,A*1), 1 =0,1,....n. If1 < s < n and

w € Ay s, then there erists a constant C, independent of u and du, such that

1 1/s 1/n
(f/ |u — uBsws/"dx> <C </ |du|”wdx) (2.8)
1Bl J5 B

for any ball or any cube B C R™.

Proof Since 1/s =1/n+ (n — s)/ns, by Holder’s inequality and Lemma 2.2, we have

1/s n 1/n (n—s)/ns
(/ |u — uB|SwS/”dJ;> < </ (wl/") dx) (/ |u — uB|”S/(”_S)daj>
B B B

= |0/, - C1|dul|s,5- (2.9)

Using Holder’s inequality again, we have

s 1/s
dulls.5 = </ (|du\w1/nw*1/") d:z:>
B
1/n s/(n—s) (n—s)/ns
n 1
(o) ()" )
B B \W
1/n
- (/ |du|”wdx) gy
B

Combining (2.9) and (2.10) yields

. 2.10
ns/(n—s),B ( )

1/s 1/n
(/ lu — uB|SwS/”dJ;> < O |w'™[n - H(l/w)l/" : (/ du|"wdx> . (2.11)
B ns/(n—s),B B

Since w € A, /4, then

0l - || 1/

ns/(n—s),B

1 s/(n—s) (n—=s)/s
(/ wdm) /(—) dx
B B \W
_ n/s—1
1 1 1 1/(n/s—1)
= | |B|"/* (—/wdac) —/ (—) dx
BB, 5] /5 \w

< Cy|B|Y5. (2.12)

1/n

1/n

Substituting (2.12) in (2.11), we obtain ([} |u — u3|5ws/"dx)1/s < Cs|B|Y* (f, |du\"walx)1/n7

that is, (ﬁ [ lu— up|*ws/mdx)ts < Cs ([ |du|”wda:)1/n. This completes the proof of The-

orem 2.2.
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3 Global Weighted Poincaré-Type Inequalities

S. G. Staples introduces the following L*-averaging domains [8]: a proper subdomain Q2 C R”
is called an L®-averaging domain, s > 1, if there exists a constant C' such that (ﬁ Jo lu —
Vs < CsupBCQ(‘—iD'I [plu — up|*dm)t/s for all uw € L; (Q). Here Q] is the n-

dimensional Lebesgue measure of ). Staples proves the Poincaré inequality in L*-averaging

ug|*dm)

domains in [8]. In [11], we introduce L®(u)-averaging domains. We call a proper subdomain

Q C R™ an L*(u)-averaging domain, s > 1, if ;(2) < oo and there exists a constant C' such

1/s
that ( ﬁ Jolu = up,|[*dp)/* < Csupypcq (ﬁ S lu— uB|3d,u) for some ball By C Q
and all u € L§ (€ A"). Here the measure p is defined by du = w(x)dx, where w(x) is a weight
and w(z) > 0 a.e., and the supremum is over all balls 2B C Q.
Now we prove the following global weighted Poincaré-type inequality in L*®(u)-averaging

domains.

Theorem 3.1 Letu € D'(,AY) and du € LP(Q, A'F1), wheren < p < oo andl=0,1,...,n
If w e Ay for any X > 0 and w > n > 0, then there exist constants C, independent of u and
du, and 8 > 1 such that for any o with 1 < a < B and (o — 1)p > (3, we have

(ﬁ s uBOSwdx) " < (ﬁ / |dupwp/5dx) T ey

for any L*(u)-averaging domain Q and some ball By with 2By C Q). Here s = (o — 1)p/ .

Proof By Theorem 2.1 and the definition of L*(u)-averaging domains, we have

1 1/5 1 1/8
— —ug,|*d <(— — ug,|*d
(u(ﬁ)/g'“ us| “) ( (Bo) /‘“ us| ”)

1/s
< (Cp sup / lu —up|® d,u)

2BCQ

|B| l/s 1/s
— ¢y sup 5 [ lu—usan)
2BCO |B\ B

< C; sup ( |B| C’2|B|1/”( / |du|pwp/sdx>1/p
~ 2BCQ M(B | B

1/p
< Cs sup (u y~L/s| Bt/ s+t n=1/p (/ |dupwp/sdx> ) (3.2)

2BCQ
Noting that u(B) = [ wdx > [5ndx = n|B|, then
|B| < Cap(B), (3.3)
where C4 = 1/n. Since p > n, then 1/n — 1/p > 0, and from (3.3) we have

u(B)_1/5|B\1/5+1/”_1/” < M(B)—l/s . (04’“(3))1/8“/“*1/17
— C5M(B)1/n_1/p < C5M(Q)1/n_1/p. (34)
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Substituting (3.4) in (3.2) yields

1 1/s 1/p
(—/ lu — uBosdu> < O sup | Csu(Q)/m-1/p (/ |dupwp/sdx>
1(€2) Jo 2BCQ B

1/p
< Cg sup (u(ﬂ)l/"_l/p (/ |dupwp/sdas> )
2BCQ Q

1/p
= Cep(Q)Y/m=1/p (/ du|pwp/sdx>
Q

1/
= Cep(Q)1/™ (L/ |du|pwp/5d:c) p,
w(€) Jo

u(lQ) Jo, |du[PwP/*dz)'/P. This completes the

that is, (ﬁ Jo lu—up,|*w(z)dz)'/s < Cp(Q)Y/(
proof of Theorem 3.1.

Definition 3.1  We call Q, a proper subdomain of R™, a 6-John domain, § > 0, if there
exists a point xo € Q which can be joined to any other point x € Q0 by a continuous curve v C §2
so that d(§,00) > 6|lx — &| for each & € ~v. Here d(&,00) is the Euclidean distance between &
and 0f).

As we know, John domains are bounded. Bounded quasiballs and bounded uniform domains

are John domains. We also know that a 6-John domain has the following properties [9].

Lemma 3.1 Let Q2 C R" be a 6-John domain. Then there exists a covering V of € consisting
of open cubes such that

(1) YgevXo@(®) < Nxa(z), o >1and z € R",

(ii) There is a distinguished cube Qo € V (called the central cube) which can be connected
with every cube @ € V by a chain of cubes Qo,Q1,...,Qr = Q from V such that for each
i=0,1,....,k—1,Q C NQ,. There is a cube R; C R™ (this cube does not need to be a member
of V) such that R; C Q; N Qit1, and Q; UQ;+1 C NR; .

We also know that if w € A,, then the measure pu defined by du = w(x)dz is a doubling
measure, that is, u(2B) < Cu(B) for all balls B in R"™, see [4, p. 299]. Since the doubling
property implies p(B) & u(Q) whenever @ is an open cube with B C Q C /nB, we may use
cubes in place of balls whenever it is convenient to us.

Now we prove the following weighted global result in John domains.

Theorem 3.2 Let u € D'(,AY) and du € L™ (Q, AT, 1 =0,1,...,n. If1 < s < n and

w € Ay s, then there erists a constant C, independent of u and du, such that

1/s

1

<_|Q| / u—qust/nd$> §0</ du|”wdx)
Q Q

for any 6-John domain Q@ C R™. Here Q is any cube in the covering V of ) appearing in

1/n

Lemma 3.1.
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Proof We can write (2.8) as

s/n
/ lu — ug|*w*/"dx < C1|Q| (/ |du|"wdz> ) (3.5)
Q Q

where @@ C R™ is any cube. Supposing o > 1, by (3.5), and the condition (i) in Lemma 3.1, we

have

s/n
/ lu — ug|*w*/™dx < Z / lu — ug|*w*/™dx < C, Z Q| (/ |dunwdx>
Q Q Q

QeV QeVv

s/n s/n
< 1|9 Z (/Q |du|"wdw> < ChL|QN (/Q |du|"wdw)

QeV

s/n
— )0 (/ |du"wdaz> .
Q
1 1/s 1/n
(—/ |u—ust5/"d3:) < (s (/ |du|”wdx> .
€2 Jo 0

This completes the proof of Theorem 3.2.

Thus, we have

Remarks (1) Since L*(u)-averaging domains reduce to L*-averaging domains if w = 1 (so
dp = w(z)dr = dz), then Theorem 3.1 also holds if 2 C R™ is an L®-averaging domain. (2) In
[11] we proved that if  is a John domain and p is a measure defined by du = w(z)dz, where
w € A,, then Q is an L*(u)-averaging domain. Therefore, Theorem 3.1 is also true if Q is a

John domain.
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