A_{r}-Weighted Poincaré-Type Inequalities for Differential Forms in Some Domains

Shu Sen DING
Department of Mathematics, Seattle University, 900 Broadway, Seattle, WA 98122, USA
E-mail: sding@seattleu.edu
Yun Ying GAI
Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, P. R. China
E-mail: gai@yahoo.com.cn

Abstract

We prove local weighted integral inequalities for differential forms. Then by using the local results, we prove global weighted integral inequalities for differential forms in $L^{s}(\mu)$-averaging domains and in John domains, respectively, which can be considered as generalizations of the classical Poincaré-type inequality.

Keywords Differential forms, $L^{s}(\mu)$-averaging domains, Poincaré inequalities
1991MR Subject Classification 58A10; 26D15, 58A14, 46 E 35.

1 Introduction

Differential forms have wide applications in many fields, such as tensor analysis, potential theory, partial differential equations and quasiregular mappings, see [1-7]. Different versions of the classical Poincaré inequality have been established in the study of the Sobolev space and differential forms, see $[2,6,8]$. Susan G. Staples proves the Poincaré inequality in L^{s} averaging domains in [8]. Tadeusz Iwaniec and Adam Lutoborski prove a local Poincaré-type inequality (see Lemma 2.2) in [6], which plays a crucial rule in generalizing the theory of Sobolev functions to differential forms. In this paper we prove local weighted Poincaré-type inequalities for differential forms in any kind of domains, and the global weighted Poincaré-type inequalities for differential forms in John domains and in $L^{s}(\mu)$-averaging domains, where μ is a measure defined by $d \mu=w(x) d x$ and $w \in A_{r}$. As we know, A-harmonic tensors are the special differential forms which are solutions to the A-harmonic equation for differential forms:

[^0]$d^{\star} A(x, d u)=0$, where $A: \Omega \times \wedge^{l}\left(\mathbf{R}^{n}\right) \rightarrow \wedge^{l}\left(\mathbf{R}^{n}\right)$ is an operator satisfying some conditions, see [5,6,9]. Thus, all of the results about differential forms in this paper remain true for A-harmonic tensors. Therefore, our new results concerning differential forms are of interest in some fields, such as those mentioned above.

Throughout this paper, we always assume Ω is a connected open subset of \mathbf{R}^{n}. Let $e_{1}, e_{2}, \ldots, e_{n}$ denote the standard unit basis of \mathbf{R}^{n}. For $l=0,1, \ldots, n$, the linear space of l-vectors, spanned by the exterior products $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots e_{i_{l}}$, corresponding to all ordered l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right), 1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n$, is denoted by $\wedge^{l}=\wedge^{l}\left(\mathbf{R}^{n}\right)$. The Grassmann algebra $\wedge=\oplus \wedge^{l}$ is a graded algebra with respect to the exterior products. For $\alpha=\sum \alpha^{I} e_{I} \in \wedge$ and $\beta=\sum \beta^{I} e_{I} \in \wedge$, the inner product in \wedge is given by $\langle\alpha, \beta\rangle=\sum \alpha^{I} \beta^{I}$ with summation over all l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ and all integers $l=0,1, \ldots, n$. We define the Hodge star operator $\star: \wedge \rightarrow \wedge$ by the rule $\star 1=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}$ and $\alpha \wedge \star \beta=$ $\beta \wedge \star \alpha=\langle\alpha, \beta\rangle(\star 1)$ for all $\alpha, \beta \in \wedge$. Hence the norm of $\alpha \in \wedge$ is given by the formula $|\alpha|^{2}=\langle\alpha, \alpha\rangle=\star(\alpha \wedge \star \alpha) \in \wedge^{0}=\mathbf{R}$. The Hodge star is an isometric isomorphism on \wedge with $\star: \wedge^{l} \rightarrow \wedge^{n-l}$ and $\star \star(-1)^{l(n-l)}: \wedge^{l} \rightarrow \wedge^{l}$. Letting $0<p<\infty$, we denote the weighted L^{p}-norm of a measurable function f over E by $\|f\|_{p, E, w}=\left(\int_{E}|f(x)|^{p} w(x) d x\right)^{1 / p}$.

As we know, a differential l-form ω on Ω is a Schwartz distribution on Ω with values in $\wedge^{l}\left(\mathbf{R}^{n}\right)$. In particular, for $l=0, \omega$ is a real function or a distribution. We denote the space of differential l-forms by $D^{\prime}\left(\Omega, \wedge^{l}\right)$. We write $L^{p}\left(\Omega, \wedge^{l}\right)$ for the l-forms $\omega(x)=\sum_{I} \omega_{I}(x) d x_{I}=$ $\sum \omega_{i_{1} i_{2} \cdots i_{l}}(x) d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{l}}$ with $\omega_{I} \in L^{p}(\Omega, \mathbf{R})$ for all ordered l-tuples I. Thus $L^{p}\left(\Omega, \wedge^{l}\right)$ is a Banach space with norm $\|\omega\|_{p, \Omega}=\left(\int_{\Omega}|\omega(x)|^{p} d x\right)^{1 / p}=\left(\int_{\Omega}\left(\sum_{I}\left|\omega_{I}(x)\right|^{2}\right)^{p / 2} d x\right)^{1 / p}$. Similarly, $W_{p}^{1}\left(\Omega, \wedge^{l}\right)$ are those differential l-forms on Ω whose coefficients are in $W_{p}^{1}(\Omega, \mathbf{R})$. The notations $W_{p, \text { loc }}^{1}(\Omega, \mathbf{R})$ and $W_{p, \text { loc }}^{1}\left(\Omega, \wedge^{l}\right)$ are self-explanatory. We denote the exterior derivative by $d: D^{\prime}\left(\Omega, \wedge^{l}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l+1}\right)$ for $l=0,1, \cdots, n$. Its formal adjoint operator $d^{\star}: D^{\prime}\left(\Omega, \wedge^{l+1}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l}\right)$ is given by $d^{\star}=(-1)^{n l+1} \star d \star$ on $D^{\prime}\left(\Omega, \wedge^{l+1}\right), l=0,1, \cdots, n$.

We write $\mathbf{R}=\mathbf{R}^{1}$. Balls are denoted by B, and σB is the ball with the same center as B and with $\operatorname{diam}(\sigma B)=\sigma \operatorname{diam}(B)$. The n-dimensional Lebesgue measure of a set $E \subseteq \mathbf{R}^{n}$ is denoted by $|E|$. We call w a weight if $w \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$ and $w>0$ a.e. Also in general $d \mu=w d x$ where w is a weight. The following result appears in [6]: Let $Q \subset \mathbf{R}^{n}$ be a cube or a ball. To each $y \in Q$ there corresponds a linear operator $K_{y}: C^{\infty}\left(Q, \wedge^{l}\right) \rightarrow C^{\infty}\left(Q, \wedge^{l-1}\right)$ defined by $\left(K_{y} \omega\right)\left(x ; \xi_{1}, \ldots, \xi_{l}\right)=\int_{0}^{1} t^{l-1} \omega\left(t x+y-t y ; x-y, \xi_{1}, \cdots, \xi_{l-1}\right) d t$ and the decomposition $\omega=d\left(K_{y} \omega\right)+K_{y}(d \omega)$.

We define another linear operator $T_{Q}: C^{\infty}\left(Q, \wedge^{l}\right) \rightarrow C^{\infty}\left(Q, \wedge^{l-1}\right)$ by averaging K_{y} over all points y in $Q: T_{Q} \omega=\int_{Q} \varphi(y) K_{y} \omega d y$ where $\varphi \in C_{0}^{\infty}(Q)$ is normalized by $\int_{Q} \varphi(y) d y=1$. We define the l-form $\omega_{Q} \in D^{\prime}\left(Q, \wedge^{l}\right)$ by $\omega_{Q}=|Q|^{-1} \int_{Q} \omega(y) d y, l=0$, and $\omega_{Q}=d\left(T_{Q} \omega\right), l=$ $1,2, \ldots, n$, for all $\omega \in L^{p}\left(Q, \wedge^{l}\right), 1 \leq p<\infty$.

The following generalized Hölder's inequality will be used repeatedly.
Lemma 1.1 Let $0<\alpha<\infty, 0<\beta<\infty$ and $s^{-1}=\alpha^{-1}+\beta^{-1}$. If f and g are measurable functions on \mathbf{R}^{n}, then $\|f g\|_{s, \Omega} \leq\|f\|_{\alpha, \Omega} \cdot\|g\|_{\beta, \Omega}$ for any $\Omega \subset \mathbf{R}^{n}$.

Definition 1.1 We say the weight $w(x)>0$ satisfies the A_{r}-condition, where $r>1$, and
write $w \in A_{r}$ if $\sup _{B}\left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B} w^{1 /(1-r)} d x\right)^{r-1}<\infty$ for any ball $B \subset \mathbf{R}^{n}$.
We also need the following lemma [10].
Lemma 1.2 If $w \in A_{r}$, then there exist constants $\beta>1$ and C, independent of w, such that $\|w\|_{\beta, Q} \leq C|Q|^{(1-\beta) / \beta}\|w\|_{1, Q}$ for any cube or any ball $Q \subset \mathbf{R}^{n}$.

2 Local Weighted Poincaré-Type Inequalities

The following version of the Poincaré inequality appears in [9].
Lemma 2.1 Let $u \in D^{\prime}\left(Q, \wedge^{l}\right)$ and $d u \in L^{p}\left(Q, \wedge^{l+1}\right)$. Then $u-u_{Q}$ is in $W_{p}^{1}\left(Q, \wedge^{l}\right)$ with $1<p<\infty$ and $\left\|u-u_{Q}\right\|_{p, Q} \leq C(n, p)|Q|^{1 / n}\|d u\|_{p, Q}$ for Q a cube or a ball in $\mathbf{R}^{n}, l=0,1, \ldots, n$.
T. Iwaniec and A. Lutoborski prove the following Poincaré-type inequality in [6].

Lemma 2.2 Let $u \in D^{\prime}\left(Q, \wedge^{l}\right)$ and $d u \in L^{p}\left(Q, \wedge^{l+1}\right)$. Then $u-u_{Q}$ is in $L^{n p /(n-p)}\left(Q, \wedge^{l}\right)$ and $\left(\int_{Q}\left|u-u_{Q}\right|^{n p /(n-p)} d x\right)^{(n-p) / n p} \leq C_{p}(n)\left(\int_{Q}|d u|^{p} d x\right)^{1 / p}$ for Q a cube or a ball in \mathbf{R}^{n}, $l=0,1, \ldots, n$ and $1<p<n$.

We now prove the following version of the local weighted Poincaré-type inequality for differential forms.

Theorem 2.1 Let $u \in D^{\prime}\left(B, \wedge^{l}\right)$ and $d u \in L^{p}\left(B, \wedge^{l+1}\right)$, where $1<p<\infty$ and $l=0,1, \ldots, n$. If $w \in A_{1+\lambda}$ for any $\lambda>0$, then there exist constants C, independent of u and $d u$, and $\beta>1$ such that for any α with $1<\alpha<\beta$ and $(\alpha-1) p>\beta$, we have

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B}\left|u-u_{B}\right|^{s} w d x\right)^{1 / s} \leq C|B|^{1 / n}\left(\frac{1}{|B|} \int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

for all balls $B \subset \mathbf{R}^{n}$. Here $s=p(\alpha-1) / \beta$.
Proof Since $w \in A_{1+\lambda}$, by Lemma 1.2, there exist constants $\beta>1$ and $C_{1}>0$, such that

$$
\begin{equation*}
\|w\|_{\beta, B} \leq C_{1}|B|^{(1-\beta) / \beta}\|w\|_{1, B} \tag{2.2}
\end{equation*}
$$

for any cube or any ball $B \subset \mathbf{R}^{n}$. Choose $t=s \beta /(\beta-1)$; then $1<s<t$ and $\beta=t /(t-s)$. Since $1 / s=1 / t+(t-s) / s t$, by Hölder's inequality, Lemma 2.1 and (2.2), we have

$$
\begin{aligned}
\left\|u-u_{B}\right\|_{s, B, w} & =\left(\int_{B}\left(\left|u-u_{B}\right| w^{1 / s}\right)^{s} d x\right)^{1 / s} \\
& \leq\left(\int_{B}\left|u-u_{B}\right|^{t} d x\right)^{1 / t}\left(\int_{B}\left(w^{1 / s}\right)^{s t /(t-s)} d x\right)^{(t-s) / s t} \\
& =\left\|u-u_{B}\right\|_{t, B} \cdot\left(\int_{B} w^{t /(t-s)} d x\right)^{(t-s) / s t}
\end{aligned}
$$

$$
\begin{align*}
& \leq C_{2}|B|^{(1-\beta) / \beta s}\|w\|_{1, B}^{1 / s} \cdot\left\|u-u_{B}\right\|_{t, B} \\
& \leq C_{2}|B|^{(1-\beta) / \beta s}\|w\|_{1, B}^{1 / s} \cdot C_{3}|B|^{1 / n}\|d u\|_{t, B} \\
& =C_{4}|B|^{1 / n}|B|^{(1-\beta) / \beta s}\|w\|_{1, B}^{1 / s} \cdot\|d u\|_{t, B} \tag{2.3}
\end{align*}
$$

Now $t=s \beta /(\beta-1)<s \beta /(\alpha-1)=p$ and $1 / t=1 / p+(p-t) / p t$, and by Hölder's inequality again we obtain

$$
\begin{align*}
\|d u\|_{t, B} & =\left(\int_{B}|d u|^{t} d x\right)^{1 / t}=\left(\int_{B}\left(|d u| w^{1 / s} w^{-1 / s}\right)^{t} d x\right)^{1 / t} \\
& \leq\left(\int_{B}\left(|d u| w^{1 / s}\right)^{p} d x\right)^{1 / p}\left(\int_{B}\left(\frac{1}{w}\right)^{p t / s(p-t)} d x\right)^{(p-t) / p t} \\
& =\left(\int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p}\left(\int_{B}\left(\frac{1}{w}\right)^{p t / s(p-t)} d x\right)^{(p-t) / p t} \tag{2.4}
\end{align*}
$$

Combining (2.3) and (2.4) yields

$$
\begin{equation*}
\left\|u-u_{B}\right\|_{s, B, w} \leq C_{4}|B|^{1 / n+(1-\beta) / \beta s}\|w\|_{1, B}^{1 / s} \cdot\left\|(1 / w)^{1 / s}\right\|_{p t /(p-t), B} \cdot\left(\int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p} \tag{2.5}
\end{equation*}
$$

Choose $\lambda>0$ such that $\lambda<1-\alpha / \beta$. Then $1+\lambda<2-\alpha / \beta=r$. Hence $w \in A_{1+\lambda} \subset A_{r}$. By simple computation we know that $s(p-t) / p t=(2-\alpha / \beta)-1=r-1$. Thus, we have

$$
\begin{align*}
&\|w\|_{1, B}^{1 / s} \cdot\left\|(1 / w)^{1 / s}\right\|_{p t /(p-t), B} \\
&=\left(\int_{B} w d x\right)^{1 / s}\left(\int_{B}\left(\frac{1}{w}\right)^{p t / s(p-t)} d x\right)^{(p-t) / p t} \\
&=\left(\left(\int_{B} w d x\right)\left(\int_{B}\left(\frac{1}{w}\right)^{p t / s(p-t)} d x\right)^{s(p-t) / p t}\right)^{1 / s} \\
&=\left(|B|^{1+s(p-t) / p t}\right)^{1 / s}\left(\left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w}\right)^{p t / s(p-t)} d x\right)^{s(p-t) / p t}\right)^{1 / s} \\
& \quad=|B|^{1 / s+1 / t-1 / p}\left(\left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w}\right)^{\frac{1}{r-1}} d x\right)^{r-1}\right)^{1 / s} \\
& \quad \leq C_{5}|B|^{1 / s+1 / t-1 / p} . \tag{2.6}
\end{align*}
$$

Substituting (2.6) in (2.5) implies

$$
\begin{equation*}
\left\|u-u_{B}\right\|_{s, B, w} \leq C_{6}|B|^{1 / n+1 / s-1 / p}\left(\int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p} \tag{2.7}
\end{equation*}
$$

We can write (2.7) as $\left(\frac{1}{|B|} \int_{B}\left|u-u_{B}\right|^{s} w(x) d x\right)^{1 / s} \leq C|B|^{1 / n}\left(\frac{1}{|B|} \int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p}$. This completes the proof of Theorem 2.1.

We now prove another version of the local weighted Poincaré-type inequality for differential forms.

Theorem 2.2 Let $u \in D^{\prime}\left(B, \wedge^{l}\right)$ and $d u \in L^{n}\left(B, \wedge^{l+1}\right), l=0,1, \ldots, n$. If $1<s<n$ and $w \in A_{n / s}$, then there exists a constant C, independent of u and du, such that

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B}\left|u-u_{B}\right|^{s} w^{s / n} d x\right)^{1 / s} \leq C\left(\int_{B}|d u|^{n} w d x\right)^{1 / n} \tag{2.8}
\end{equation*}
$$

for any ball or any cube $B \subset \mathbf{R}^{n}$.
Proof Since $1 / s=1 / n+(n-s) / n s$, by Hölder's inequality and Lemma 2.2, we have

$$
\begin{align*}
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{s / n} d x\right)^{1 / s} & \leq\left(\int_{B}\left(w^{1 / n}\right)^{n} d x\right)^{1 / n}\left(\int_{B}\left|u-u_{B}\right|^{n s /(n-s)} d x\right)^{(n-s) / n s} \\
& =\left\|w^{1 / n}\right\|_{n, B} \cdot C_{1}\|d u\|_{s, B} \tag{2.9}
\end{align*}
$$

Using Hölder's inequality again, we have

$$
\begin{align*}
\|d u\|_{s, B} & =\left(\int_{B}\left(|d u| w^{1 / n} w^{-1 / n}\right)^{s} d x\right)^{1 / s} \\
& \leq\left(\int_{B}\left(|d u| w^{1 / n}\right)^{n} d x\right)^{1 / n}\left(\int_{B}\left(\frac{1}{w}\right)^{s /(n-s)} d x\right)^{(n-s) / n s} \\
& =\left(\int_{B}|d u|^{n} w d x\right)^{1 / n} \cdot\left\|(1 / w)^{1 / n}\right\|_{n s /(n-s), B} \tag{2.10}
\end{align*}
$$

Combining (2.9) and (2.10) yields

$$
\begin{equation*}
\left(\int_{B}\left|u-u_{B}\right|^{s} w^{s / n} d x\right)^{1 / s} \leq C_{1}\left\|w^{1 / n}\right\|_{n, B} \cdot\left\|(1 / w)^{1 / n}\right\|_{n s /(n-s), B} \cdot\left(\int_{B}|d u|^{n} w d x\right)^{1 / n} \tag{2.11}
\end{equation*}
$$

Since $w \in A_{n / s}$, then

$$
\begin{align*}
& \left\|w^{1 / n}\right\|_{n, B} \cdot\left\|(1 / w)^{1 / n}\right\|_{n s /(n-s), B} \\
& \quad=\left(\left(\int_{B} w d x\right)\left(\int_{B}\left(\frac{1}{w}\right)^{s /(n-s)} d x\right)^{(n-s) / s}\right)^{1 / n} \\
& \quad=\left(|B|^{n / s}\left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w}\right)^{1 /(n / s-1)} d x\right)^{n / s-1}\right)^{1 / n} \\
& \quad \leq C_{2}|B|^{1 / s} \tag{2.12}
\end{align*}
$$

Substituting (2.12) in (2.11), we obtain $\left(\int_{B}\left|u-u_{B}\right|^{s} w^{s / n} d x\right)^{1 / s} \leq C_{3}|B|^{1 / s}\left(\int_{B}|d u|^{n} w d x\right)^{1 / n}$, that is, $\left(\frac{1}{|B|} \int_{B}\left|u-u_{B}\right|^{s} w^{s / n} d x\right)^{1 / s} \leq C_{3}\left(\int_{B}|d u|^{n} w d x\right)^{1 / n}$. This completes the proof of Theorem 2.2.

3 Global Weighted Poincaré-Type Inequalities

S. G. Staples introduces the following L^{s}-averaging domains [8]: a proper subdomain $\Omega \subset \mathbf{R}^{n}$ is called an L^{s}-averaging domain, $s \geq 1$, if there exists a constant C such that $\left(\left.\frac{1}{|\Omega|} \int_{\Omega} \right\rvert\, u-\right.$ $\left.\left.u_{\Omega}\right|^{s} d m\right)^{1 / s} \leq C \sup _{B \subset \Omega}\left(\frac{1}{|B|} \int_{B}\left|u-u_{B}\right|^{s} d m\right)^{1 / s}$ for all $u \in L_{\text {loc }}^{s}(\Omega)$. Here $|\Omega|$ is the n dimensional Lebesgue measure of Ω. Staples proves the Poincaré inequality in L^{s}-averaging domains in [8]. In [11], we introduce $L^{s}(\mu)$-averaging domains. We call a proper subdomain $\Omega \subset \mathbf{R}^{n}$ an $L^{s}(\mu)$-averaging domain, $s \geq 1$, if $\mu(\Omega)<\infty$ and there exists a constant C such that $\left(\frac{1}{\mu\left(B_{0}\right)} \int_{\Omega}\left|u-u_{B_{0}}\right|^{s} d \mu\right)^{1 / s} \leq C \sup _{2 B \subset \Omega}\left(\frac{1}{\mu(B)} \int_{B}\left|u-u_{B}\right|^{s} d \mu\right)^{1 / s}$ for some ball $B_{0} \subset \Omega$ and all $u \in L_{\text {loc }}^{s}\left(\Omega ; \wedge^{l}\right)$. Here the measure μ is defined by $d \mu=w(x) d x$, where $w(x)$ is a weight and $w(x)>0$ a.e., and the supremum is over all balls $2 B \subset \Omega$.

Now we prove the following global weighted Poincaré-type inequality in $L^{s}(\mu)$-averaging domains.

Theorem 3.1 Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ and $d u \in L^{p}\left(\Omega, \wedge^{l+1}\right)$, where $n<p<\infty$ and $l=0,1, \ldots, n$. If $w \in A_{1+\lambda}$ for any $\lambda>0$ and $w \geq \eta>0$, then there exist constants C, independent of u and $d u$, and $\beta>1$ such that for any α with $1<\alpha<\beta$ and $(\alpha-1) p>\beta$, we have

$$
\begin{equation*}
\left(\frac{1}{\mu(\Omega)} \int_{\Omega}\left|u-u_{B_{0}}\right|^{s} w d x\right)^{1 / s} \leq C \mu(\Omega)^{1 / n}\left(\frac{1}{\mu(\Omega)} \int_{\Omega}|d u|^{p} w^{p / s} d x\right)^{1 / p} \tag{3.1}
\end{equation*}
$$

for any $L^{s}(\mu)$-averaging domain Ω and some ball B_{0} with $2 B_{0} \subset \Omega$. Here $s=(\alpha-1) p / \beta$.
Proof By Theorem 2.1 and the definition of $L^{s}(\mu)$-averaging domains, we have

$$
\begin{align*}
& \left(\frac{1}{\mu(\Omega)} \int_{\Omega}\left|u-u_{B_{0}}\right|^{s} d \mu\right)^{1 / s} \leq\left(\frac{1}{\mu\left(B_{0}\right)} \int_{\Omega}\left|u-u_{B_{0}}\right|^{s} d \mu\right)^{1 / s} \\
& \quad \leq C_{1} \sup _{2 B \subset \Omega}\left(\frac{1}{\mu(B)} \int_{B}\left|u-u_{B}\right|^{s} d \mu\right)^{1 / s} \\
& \quad=C_{1} \sup _{2 B \subset \Omega}\left(\left(\frac{|B|}{\mu(B)}\right)^{1 / s}\left(\frac{1}{|B|} \int_{B}\left|u-u_{B}\right|^{s} d \mu\right)^{1 / s}\right) \\
& \quad \leq C_{1} \sup _{2 B \subset \Omega}\left(\left(\frac{|B|}{\mu(B)}\right)^{1 / s} \cdot C_{2}|B|^{1 / n}\left(\frac{1}{|B|} \int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p}\right) \\
& \quad \leq C_{3} \sup _{2 B \subset \Omega}\left(\mu(B)^{-1 / s}|B|^{1 / s+1 / n-1 / p}\left(\int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p}\right) \tag{3.2}
\end{align*}
$$

Noting that $\mu(B)=\int_{B} w d x \geq \int_{B} \eta d x=\eta|B|$, then

$$
\begin{equation*}
|B| \leq C_{4} \mu(B) \tag{3.3}
\end{equation*}
$$

where $C_{4}=1 / \eta$. Since $p>n$, then $1 / n-1 / p>0$, and from (3.3) we have

$$
\begin{align*}
\mu(B)^{-1 / s}|B|^{1 / s+1 / n-1 / p} & \leq \mu(B)^{-1 / s} \cdot\left(C_{4} \mu(B)\right)^{1 / s+1 / n-1 / p} \\
=C_{5} \mu(B)^{1 / n-1 / p} & \leq C_{5} \mu(\Omega)^{1 / n-1 / p} \tag{3.4}
\end{align*}
$$

Substituting (3.4) in (3.2) yields

$$
\begin{aligned}
\left(\frac{1}{\mu(\Omega)} \int_{\Omega}\left|u-u_{B_{0}}\right|^{s} d \mu\right)^{1 / s} & \leq C_{3} \sup _{2 B \subset \Omega}\left(C_{5} \mu(\Omega)^{1 / n-1 / p}\left(\int_{B}|d u|^{p} w^{p / s} d x\right)^{1 / p}\right) \\
& \leq C_{6} \sup _{2 B \subset \Omega}\left(\mu(\Omega)^{1 / n-1 / p}\left(\int_{\Omega}|d u|^{p} w^{p / s} d x\right)^{1 / p}\right) \\
& =C_{6} \mu(\Omega)^{1 / n-1 / p}\left(\int_{\Omega}|d u|^{p} w^{p / s} d x\right)^{1 / p} \\
& =C_{6} \mu(\Omega)^{1 / n}\left(\frac{1}{\mu(\Omega)} \int_{\Omega}|d u|^{p} w^{p / s} d x\right)^{1 / p}
\end{aligned}
$$

that is, $\left(\frac{1}{\mu(\Omega)} \int_{\Omega}\left|u-u_{B_{0}}\right|^{s} w(x) d x\right)^{1 / s} \leq C \mu(\Omega)^{1 / n}\left(\frac{1}{\mu(\Omega)} \int_{\Omega}|d u|^{p} w^{p / s} d x\right)^{1 / p}$. This completes the proof of Theorem 3.1.

Definition 3.1 We call Ω, a proper subdomain of \mathbf{R}^{n}, a δ-John domain, $\delta>0$, if there exists a point $x_{0} \in \Omega$ which can be joined to any other point $x \in \Omega$ by a continuous curve $\gamma \subset \Omega$ so that $d(\xi, \partial \Omega) \geq \delta|x-\xi|$ for each $\xi \in \gamma$. Here $d(\xi, \partial \Omega)$ is the Euclidean distance between ξ and $\partial \Omega$.

As we know, John domains are bounded. Bounded quasiballs and bounded uniform domains are John domains. We also know that a δ-John domain has the following properties [9].

Lemma 3.1 Let $\Omega \subset \mathbf{R}^{n}$ be a δ-John domain. Then there exists a covering \mathcal{V} of Ω consisting of open cubes such that
(i) $\sum_{Q \in \mathcal{V}} \chi_{\sigma Q}(x) \leq N \chi_{\Omega}(x), \sigma>1$ and $x \in \mathbf{R}^{n}$,
(ii) There is a distinguished cube $Q_{0} \in \mathcal{V}$ (called the central cube) which can be connected with every cube $Q \in \mathcal{V}$ by a chain of cubes $Q_{0}, Q_{1}, \ldots, Q_{k}=Q$ from \mathcal{V} such that for each $i=0,1, \ldots, k-1, Q \subset N Q_{i}$. There is a cube $R_{i} \subset \mathbf{R}^{\mathbf{n}}$ (this cube does not need to be a member of \mathcal{V}) such that $R_{i} \subset Q_{i} \cap Q_{i+1}$, and $Q_{i} \cup Q_{i+1} \subset N R_{i}$.

We also know that if $w \in A_{r}$, then the measure μ defined by $d \mu=w(x) d x$ is a doubling measure, that is, $\mu(2 B) \leq C \mu(B)$ for all balls B in \mathbf{R}^{n}, see [4, p. 299]. Since the doubling property implies $\mu(B) \approx \mu(Q)$ whenever Q is an open cube with $B \subset Q \subset \sqrt{n} B$, we may use cubes in place of balls whenever it is convenient to us.

Now we prove the following weighted global result in John domains.
Theorem 3.2 Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ and $d u \in L^{n}\left(\Omega, \wedge^{l+1}\right), l=0,1, \ldots, n$. If $1<s<n$ and $w \in A_{n / s}$, then there exists a constant C, independent of u and $d u$, such that

$$
\left(\frac{1}{|\Omega|} \int_{\Omega}\left|u-u_{Q}\right|^{s} w^{s / n} d x\right)^{1 / s} \leq C\left(\int_{\Omega}|d u|^{n} w d x\right)^{1 / n}
$$

for any δ-John domain $\Omega \subset \mathbf{R}^{n}$. Here Q is any cube in the covering \mathcal{V} of Ω appearing in Lemma 3.1.

Proof We can write (2.8) as

$$
\begin{equation*}
\int_{Q}\left|u-u_{Q}\right|^{s} w^{s / n} d x \leq C_{1}|Q|\left(\int_{Q}|d u|^{n} w d x\right)^{s / n} \tag{3.5}
\end{equation*}
$$

where $Q \subset \mathbf{R}^{n}$ is any cube. Supposing $\sigma>1$, by (3.5), and the condition (i) in Lemma 3.1, we have

$$
\begin{aligned}
\int_{\Omega}\left|u-u_{Q}\right|^{s} w^{s / n} d x & \leq \sum_{Q \in \mathcal{V}} \int_{Q}\left|u-u_{Q}\right|^{s} w^{s / n} d x \leq C_{1} \sum_{Q \in \mathcal{V}}|Q|\left(\int_{Q}|d u|^{n} w d x\right)^{s / n} \\
& \leq C_{1}|\Omega| \sum_{Q \in \mathcal{V}}\left(\int_{\sigma Q}|d u|^{n} w d x\right)^{s / n} \leq C_{1}|\Omega| N\left(\int_{\Omega}|d u|^{n} w d x\right)^{s / n} \\
& =C_{2}|\Omega|\left(\int_{\Omega}|d u|^{n} w d x\right)^{s / n}
\end{aligned}
$$

Thus, we have

$$
\left(\frac{1}{|\Omega|} \int_{\Omega}\left|u-u_{Q}\right|^{s} w^{s / n} d x\right)^{1 / s} \leq C_{3}\left(\int_{\Omega}|d u|^{n} w d x\right)^{1 / n}
$$

This completes the proof of Theorem 3.2.
Remarks (1) Since $L^{s}(\mu)$-averaging domains reduce to L^{s}-averaging domains if $w=1$ (so $d \mu=w(x) d x=d x)$, then Theorem 3.1 also holds if $\Omega \subset \mathbf{R}^{n}$ is an L^{s}-averaging domain. (2) In [11] we proved that if Ω is a John domain and μ is a measure defined by $d \mu=w(x) d x$, where $w \in A_{r}$, then Ω is an $L^{s}(\mu)$-averaging domain. Therefore, Theorem 3.1 is also true if Ω is a John domain.

References

[1] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 1977, 63: 337-403.
[2] H. Cartan, Differential Forms, Houghton Mifflin, Co, Boston, MA, 1970.
[3] S. S. Ding, Weighted Hardy-Littlewood inequality for A-harmonic tensors, Proc. Amer. Math. Soc., 1997, 125: 1727-1735.
[4] J. Heinonen, T. Kilpelainen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford, 1999.
[5] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. Math., 1992, 136: 589-624.
[6] T. Iwaniec, A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal., 1993, 125: 25-79.
[7] T. Iwaniec, G. Martin, Quasiregular mappings in even dimensions, Acta Math., 1993, 170: 29-81.
[8] S. G. Staples, L^{p}-averaging domains and the Poincare inequality, Ann. Acad. Sci. Fenn. Ser. AI Math., 1989, 14: 103-127.
[9] C. A. Nolder, Hardy-Littlewood theorems for A-harmonic tensors, Ill. J. Math., to appear.
[10] J. B. Garnett, Bounded Analytic Functions, New York: Academic Press, 1970.
[11] S. S. Ding, C. Nolder, $L^{s}(\mu)$-averaging domains and their applications, Ann. Acad. Sci. Fenn. Ser. AI Math., to appear.

[^0]: Received October 7, 1998, Accepted May 19, 1999

