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1 Introduction

Differential forms have wide applications in many fields, such as tensor analysis, potential
theory, partial differential equations and quasiregular mappings, see [1–7]. Different versions
of the classical Poincaré inequality have been established in the study of the Sobolev space
and differential forms, see [2,6,8]. Susan G. Staples proves the Poincaré inequality in Ls-
averaging domains in [8]. Tadeusz Iwaniec and Adam Lutoborski prove a local Poincaré-type
inequality (see Lemma 2.2) in [6], which plays a crucial rule in generalizing the theory of
Sobolev functions to differential forms. In this paper we prove local weighted Poincaré-type
inequalities for differential forms in any kind of domains, and the global weighted Poincaré-type
inequalities for differential forms in John domains and in Ls(µ)-averaging domains, where µ

is a measure defined by dµ = w(x)dx and w ∈ Ar. As we know, A-harmonic tensors are the
special differential forms which are solutions to the A-harmonic equation for differential forms:
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d�A(x, du) = 0, where A : Ω×∧l(Rn) → ∧l(Rn) is an operator satisfying some conditions, see
[5,6,9]. Thus, all of the results about differential forms in this paper remain true for A-harmonic
tensors. Therefore, our new results concerning differential forms are of interest in some fields,
such as those mentioned above.

Throughout this paper, we always assume Ω is a connected open subset of Rn. Let
e1, e2, . . . , en denote the standard unit basis of Rn. For l = 0, 1, . . . , n, the linear space of
l-vectors, spanned by the exterior products eI = ei1 ∧ ei2 ∧ · · · eil

, corresponding to all ordered
l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · < il ≤ n, is denoted by ∧l = ∧l(Rn). The
Grassmann algebra ∧ = ⊕∧l is a graded algebra with respect to the exterior products. For
α =

∑
αIeI ∈ ∧ and β =

∑
βIeI ∈ ∧, the inner product in ∧ is given by 〈α, β〉 = ∑αIβI

with summation over all l-tuples I = (i1, i2, . . . , il) and all integers l = 0, 1, . . . , n. We de-
fine the Hodge star operator �: ∧ → ∧ by the rule �1 = e1 ∧ e2 ∧ · · · ∧ en and α ∧ �β =
β ∧ �α = 〈α, β〉(�1) for all α, β ∈ ∧. Hence the norm of α ∈ ∧ is given by the formula
|α|2 = 〈α,α〉 = �(α ∧ �α) ∈ ∧0 = R. The Hodge star is an isometric isomorphism on ∧ with
� : ∧l → ∧n−l and � � (−1)l(n−l) : ∧l → ∧l. Letting 0 < p < ∞, we denote the weighted
Lp-norm of a measurable function f over E by ||f ||p,E,w =

(∫
E
|f(x)|pw(x)dx)1/p

.

As we know, a differential l-form ω on Ω is a Schwartz distribution on Ω with values in
∧l(Rn). In particular, for l = 0, ω is a real function or a distribution. We denote the space
of differential l-forms by D′(Ω,∧l). We write Lp(Ω,∧l) for the l-forms ω(x) =

∑
I ωI(x)dxI =∑

ωi1i2···il
(x)dxi1∧dxi2∧· · ·∧dxil

with ωI ∈ Lp(Ω, R) for all ordered l-tuples I. Thus Lp(Ω,∧l)
is a Banach space with norm ||ω||p,Ω =

(∫
Ω
|ω(x)|pdx)1/p =

(∫
Ω
(
∑

I |ωI(x)|2)p/2dx
)1/p

. Sim-
ilarly, W 1

p (Ω,∧l) are those differential l-forms on Ω whose coefficients are in W 1
p (Ω, R). The

notations W 1
p,loc(Ω, R) and W 1

p,loc(Ω,∧l) are self-explanatory. We denote the exterior deriva-
tive by d : D′(Ω,∧l) → D′(Ω,∧l+1) for l = 0, 1, · · · , n. Its formal adjoint operator
d� : D′(Ω,∧l+1) → D′(Ω,∧l) is given by d� = (−1)nl+1 � d� on D′(Ω,∧l+1), l = 0, 1, · · · , n.

We write R = R1. Balls are denoted by B, and σB is the ball with the same center as
B and with diam(σB) = σdiam(B). The n-dimensional Lebesgue measure of a set E ⊆ Rn is
denoted by |E|. We call w a weight if w ∈ L1

loc(R
n) and w > 0 a.e. Also in general dµ = wdx

where w is a weight. The following result appears in [6]: Let Q ⊂ Rn be a cube or a ball.
To each y ∈ Q there corresponds a linear operator Ky : C∞(Q,∧l) → C∞(Q,∧l−1) defined
by (Kyω)(x; ξ1, . . . , ξl) =

∫ 1

0
tl−1ω(tx + y − ty;x − y, ξ1, · · · , ξl−1)dt and the decomposition

ω = d(Kyω) +Ky(dω).

We define another linear operator TQ : C∞(Q,∧l) → C∞(Q,∧l−1) by averaging Ky over
all points y in Q: TQω =

∫
Q
ϕ(y)Kyωdy where ϕ ∈ C∞

0 (Q) is normalized by
∫

Q
ϕ(y)dy = 1.

We define the l-form ωQ ∈ D′(Q,∧l) by ωQ = |Q|−1
∫

Q
ω(y)dy, l = 0, and ωQ = d(TQω), l =

1, 2, . . . , n, for all ω ∈ Lp(Q,∧l), 1 ≤ p < ∞.

The following generalized Hölder’s inequality will be used repeatedly.

Lemma 1.1 Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 + β−1. If f and g are measurable
functions on Rn, then ‖ fg ‖s,Ω≤‖ f ‖α,Ω · ‖ g ‖β,Ω for any Ω ⊂ Rn.

Definition 1.1 We say the weight w(x) > 0 satisfies the Ar-condition, where r > 1, and
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write w ∈ Ar if supB(
1

|B|
∫

B
wdx)( 1

|B|
∫

B
w1/(1−r)dx)r−1 < ∞ for any ball B ⊂ Rn.

We also need the following lemma [10].

Lemma 1.2 If w ∈ Ar, then there exist constants β > 1 and C, independent of w, such that
‖ w ‖β,Q≤ C|Q|(1−β)/β ‖ w ‖1,Q for any cube or any ball Q ⊂ Rn.

2 Local Weighted Poincaré-Type Inequalities

The following version of the Poincaré inequality appears in [9].

Lemma 2.1 Let u ∈ D′(Q,∧l) and du ∈ Lp(Q,∧l+1). Then u − uQ is in W 1
p (Q,∧l) with

1 < p < ∞ and ‖u−uQ‖p,Q ≤ C(n, p)|Q|1/n‖du‖p,Q for Q a cube or a ball in Rn, l = 0, 1, . . . , n.

T. Iwaniec and A. Lutoborski prove the following Poincaré-type inequality in [6].

Lemma 2.2 Let u ∈ D′(Q,∧l) and du ∈ Lp(Q,∧l+1). Then u − uQ is in Lnp/(n−p)(Q,∧l)
and (

∫
Q
|u − uQ|np/(n−p)dx)(n−p)/np ≤ Cp(n)(

∫
Q
|du|pdx)1/p for Q a cube or a ball in Rn,

l = 0, 1, . . . , n and 1 < p < n.

We now prove the following version of the local weighted Poincaré-type inequality for dif-
ferential forms.

Theorem 2.1 Let u ∈ D′(B,∧l) and du ∈ Lp(B,∧l+1), where 1 < p < ∞ and l = 0, 1, . . . , n.
If w ∈ A1+λ for any λ > 0, then there exist constants C, independent of u and du, and β > 1
such that for any α with 1 < α < β and (α− 1)p > β, we have

(
1
|B|

∫
B

|u− uB |swdx

)1/s

≤ C|B|1/n

(
1
|B|

∫
B

|du|pwp/sdx

)1/p

(2.1)

for all balls B ⊂ Rn. Here s = p(α− 1)/β.

Proof Since w ∈ A1+λ, by Lemma 1.2, there exist constants β > 1 and C1 > 0, such that

‖ w ‖β,B≤ C1|B|(1−β)/β ‖ w ‖1,B (2.2)

for any cube or any ball B ⊂ Rn. Choose t = sβ/(β − 1); then 1 < s < t and β = t/(t− s).
Since 1/s = 1/t+ (t− s)/st, by Hölder’s inequality, Lemma 2.1 and (2.2), we have

‖u− uB‖s,B,w =
(∫

B

(
|u− uB |w1/s

)s

dx

)1/s

≤
(∫

B

|u− uB |tdx
)1/t(∫

B

(
w1/s

)st/(t−s)

dx

)(t−s)/st

= ‖u− uB‖t,B ·
(∫

B

wt/(t−s)dx

)(t−s)/st
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≤ C2|B|(1−β)/βs‖w‖1/s
1,B · ‖u− uB‖t,B

≤ C2|B|(1−β)/βs‖w‖1/s
1,B · C3|B|1/n‖du‖t,B

= C4|B|1/n|B|(1−β)/βs‖w‖1/s
1,B · ‖du‖t,B . (2.3)

Now t = sβ/(β − 1) < sβ/(α − 1) = p and 1/t = 1/p + (p − t)/pt, and by Hölder’s inequality
again we obtain

‖du‖t,B =
(∫

B

|du|tdx
)1/t

=
(∫

B

(
|du|w1/sw−1/s

)t

dx

)1/t

≤
(∫

B

(
|du|w1/s

)p

dx

)1/p
(∫

B

(
1
w

)pt/s(p−t)

dx

)(p−t)/pt

=
(∫

B

|du|pwp/sdx

)1/p
(∫

B

(
1
w

)pt/s(p−t)

dx

)(p−t)/pt

. (2.4)

Combining (2.3) and (2.4) yields

‖u−uB‖s,B,w ≤ C4|B|1/n+(1−β)/βs‖w‖1/s
1,B ·

∥∥∥(1/w)1/s
∥∥∥

pt/(p−t),B
·
(∫

B

|du|pwp/sdx

)1/p

. (2.5)

Choose λ > 0 such that λ < 1− α/β. Then 1 + λ < 2− α/β = r. Hence w ∈ A1+λ ⊂ Ar. By
simple computation we know that s(p− t)/pt = (2− α/β)− 1 = r − 1. Thus, we have

‖w‖1/s
1,B ·

∥∥∥(1/w)1/s
∥∥∥

pt/(p−t),B

=
(∫

B

wdx

)1/s
(∫

B

(
1
w

)pt/s(p−t)

dx

)(p−t)/pt

=


(∫

B

wdx

)(∫
B

(
1
w

)pt/s(p−t)

dx

)s(p−t)/pt



1/s

=
(
|B|1+s(p−t)/pt

)1/s


( 1

|B|
∫

B

wdx

)(
1
|B|

∫
B

(
1
w

)pt/s(p−t)

dx

)s(p−t)/pt



1/s

= |B|1/s+1/t−1/p


( 1

|B|
∫

B

wdx

)(
1
|B|

∫
B

(
1
w

) 1
r−1

dx

)r−1



1/s

≤ C5|B|1/s+1/t−1/p. (2.6)

Substituting (2.6) in (2.5) implies

‖u− uB‖s,B,w ≤ C6|B|1/n+1/s−1/p

(∫
B

|du|pwp/sdx

)1/p

. (2.7)

We can write (2.7) as ( 1
|B|
∫

B
|u−uB |sw(x)dx)1/s ≤ C|B|1/n( 1

|B|
∫

B
|du|pwp/sdx)1/p. This com-

pletes the proof of Theorem 2.1.
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We now prove another version of the local weighted Poincaré-type inequality for differential
forms.

Theorem 2.2 Let u ∈ D′(B,∧l) and du ∈ Ln(B,∧l+1), l = 0, 1, . . . , n. If 1 < s < n and
w ∈ An/s, then there exists a constant C, independent of u and du, such that

(
1
|B|

∫
B

|u− uB |sws/ndx

)1/s

≤ C

(∫
B

|du|nwdx

)1/n

(2.8)

for any ball or any cube B ⊂ Rn.

Proof Since 1/s = 1/n+ (n− s)/ns, by Hölder’s inequality and Lemma 2.2, we have

(∫
B

|u− uB |sws/ndx

)1/s

≤
(∫

B

(
w1/n

)n

dx

)1/n(∫
B

|u− uB |ns/(n−s)dx

)(n−s)/ns

= ‖w1/n‖n,B · C1‖du‖s,B . (2.9)

Using Hölder’s inequality again, we have

‖du‖s,B =
(∫

B

(
|du|w1/nw−1/n

)s

dx

)1/s

≤
(∫

B

(
|du|w1/n

)n

dx

)1/n
(∫

B

(
1
w

)s/(n−s)

dx

)(n−s)/ns

=
(∫

B

|du|nwdx

)1/n

·
∥∥∥(1/w)1/n

∥∥∥
ns/(n−s),B

. (2.10)

Combining (2.9) and (2.10) yields

(∫
B

|u− uB |sws/ndx

)1/s

≤ C1‖w1/n‖n,B ·
∥∥∥(1/w)1/n

∥∥∥
ns/(n−s),B

·
(∫

B

|du|nwdx

)1/n

. (2.11)

Since w ∈ An/s, then

‖w1/n‖n,B ·
∥∥∥(1/w)1/n

∥∥∥
ns/(n−s),B

=


(∫

B

wdx

)(∫
B

(
1
w

)s/(n−s)

dx

)(n−s)/s



1/n

=


|B|n/s

(
1
|B|

∫
B

wdx

)(
1
|B|

∫
B

(
1
w

)1/(n/s−1)

dx

)n/s−1



1/n

≤ C2|B|1/s. (2.12)

Substituting (2.12) in (2.11), we obtain
(∫

B
|u− uB |sws/ndx

)1/s ≤ C3|B|1/s
(∫

B
|du|nwdx

)1/n
,

that is, ( 1
|B|
∫

B
|u − uB |sws/ndx)1/s ≤ C3

(∫
B
|du|nwdx

)1/n
. This completes the proof of The-

orem 2.2.
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3 Global Weighted Poincaré-Type Inequalities

S. G. Staples introduces the following Ls-averaging domains [8]: a proper subdomain Ω ⊂ Rn

is called an Ls-averaging domain, s ≥ 1, if there exists a constant C such that ( 1
|Ω|
∫
Ω
|u −

uΩ|sdm)1/s ≤ C supB⊂Ω(
1

|B|
∫

B
|u − uB |sdm)1/s for all u ∈ Ls

loc(Ω). Here |Ω| is the n-
dimensional Lebesgue measure of Ω. Staples proves the Poincaré inequality in Ls-averaging
domains in [8]. In [11], we introduce Ls(µ)-averaging domains. We call a proper subdomain
Ω ⊂ Rn an Ls(µ)-averaging domain, s ≥ 1, if µ(Ω) < ∞ and there exists a constant C such

that ( 1
µ(B0)

∫
Ω
|u − uB0 |sdµ)1/s ≤ C sup2B⊂Ω

(
1

µ(B)

∫
B
|u− uB |sdµ

)1/s

for some ball B0 ⊂ Ω
and all u ∈ Ls

loc(Ω;∧l). Here the measure µ is defined by dµ = w(x)dx, where w(x) is a weight
and w(x) > 0 a.e., and the supremum is over all balls 2B ⊂ Ω.

Now we prove the following global weighted Poincaré-type inequality in Ls(µ)-averaging
domains.

Theorem 3.1 Let u ∈ D′(Ω,∧l) and du ∈ Lp(Ω,∧l+1), where n < p < ∞ and l = 0, 1, . . . , n.
If w ∈ A1+λ for any λ > 0 and w ≥ η > 0, then there exist constants C, independent of u and
du, and β > 1 such that for any α with 1 < α < β and (α− 1)p > β, we have

(
1

µ(Ω)

∫
Ω

|u− uB0 |swdx

)1/s

≤ Cµ(Ω)1/n

(
1

µ(Ω)

∫
Ω

|du|pwp/sdx

)1/p

(3.1)

for any Ls(µ)-averaging domain Ω and some ball B0 with 2B0 ⊂ Ω. Here s = (α− 1)p/β.

Proof By Theorem 2.1 and the definition of Ls(µ)-averaging domains, we have

(
1

µ(Ω)

∫
Ω

|u− uB0 |sdµ
)1/s

≤
(

1
µ(B0)

∫
Ω

|u− uB0 |sdµ
)1/s

≤ C1 sup
2B⊂Ω

(
1

µ(B)

∫
B

|u− uB |sdµ
)1/s

= C1 sup
2B⊂Ω

(( |B|
µ(B)

)1/s( 1
|B|

∫
B

|u− uB |sdµ
)1/s

)

≤ C1 sup
2B⊂Ω

(( |B|
µ(B)

)1/s

· C2|B|1/n

(
1
|B|

∫
B

|du|pwp/sdx

)1/p
)

≤ C3 sup
2B⊂Ω

(
µ(B)−1/s|B|1/s+1/n−1/p

(∫
B

|du|pwp/sdx

)1/p
)

. (3.2)

Noting that µ(B) =
∫

B
wdx ≥ ∫

B
ηdx = η|B|, then

|B| ≤ C4µ(B), (3.3)

where C4 = 1/η. Since p > n, then 1/n− 1/p > 0, and from (3.3) we have

µ(B)−1/s|B|1/s+1/n−1/p ≤ µ(B)−1/s · (C4µ(B))
1/s+1/n−1/p

= C5µ(B)1/n−1/p ≤ C5µ(Ω)1/n−1/p. (3.4)
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Substituting (3.4) in (3.2) yields

(
1

µ(Ω)

∫
Ω

|u− uB0 |sdµ
)1/s

≤ C3 sup
2B⊂Ω

(
C5µ(Ω)1/n−1/p

(∫
B

|du|pwp/sdx

)1/p
)

≤ C6 sup
2B⊂Ω

(
µ(Ω)1/n−1/p

(∫
Ω

|du|pwp/sdx

)1/p
)

= C6µ(Ω)1/n−1/p

(∫
Ω

|du|pwp/sdx

)1/p

= C6µ(Ω)1/n

(
1

µ(Ω)

∫
Ω

|du|pwp/sdx

)1/p

,

that is, ( 1
µ(Ω)

∫
Ω
|u− uB0 |sw(x)dx)1/s ≤ Cµ(Ω)1/n( 1

µ(Ω)

∫
Ω
|du|pwp/sdx)1/p. This completes the

proof of Theorem 3.1.

Definition 3.1 We call Ω, a proper subdomain of Rn, a δ-John domain, δ > 0, if there
exists a point x0 ∈ Ω which can be joined to any other point x ∈ Ω by a continuous curve γ ⊂ Ω
so that d(ξ, ∂Ω) ≥ δ|x − ξ| for each ξ ∈ γ. Here d(ξ, ∂Ω) is the Euclidean distance between ξ

and ∂Ω.

As we know, John domains are bounded. Bounded quasiballs and bounded uniform domains
are John domains. We also know that a δ-John domain has the following properties [9].

Lemma 3.1 Let Ω ⊂ Rn be a δ-John domain. Then there exists a covering V of Ω consisting
of open cubes such that

(i)
∑

Q∈V χσQ(x) ≤ NχΩ(x), σ > 1 and x ∈ Rn,

(ii) There is a distinguished cube Q0 ∈ V (called the central cube) which can be connected
with every cube Q ∈ V by a chain of cubes Q0, Q1, . . . , Qk = Q from V such that for each
i = 0, 1, . . . , k−1, Q ⊂ NQi. There is a cube Ri ⊂ Rn (this cube does not need to be a member
of V ) such that Ri ⊂ Qi ∩Qi+1, and Qi ∪Qi+1 ⊂ NRi .

We also know that if w ∈ Ar, then the measure µ defined by dµ = w(x)dx is a doubling
measure, that is, µ(2B) ≤ Cµ(B) for all balls B in Rn, see [4, p. 299]. Since the doubling
property implies µ(B) ≈ µ(Q) whenever Q is an open cube with B ⊂ Q ⊂ √

nB, we may use
cubes in place of balls whenever it is convenient to us.

Now we prove the following weighted global result in John domains.

Theorem 3.2 Let u ∈ D′(Ω,∧l) and du ∈ Ln(Ω,∧l+1), l = 0, 1, . . . , n. If 1 < s < n and
w ∈ An/s, then there exists a constant C, independent of u and du, such that

(
1
|Ω|
∫

Ω

|u− uQ|sws/ndx

)1/s

≤ C

(∫
Ω

|du|nwdx

)1/n

for any δ-John domain Ω ⊂ Rn. Here Q is any cube in the covering V of Ω appearing in
Lemma 3.1.
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Proof We can write (2.8) as

∫
Q

|u− uQ|sws/ndx ≤ C1|Q|
(∫

Q

|du|nwdx

)s/n

, (3.5)

where Q ⊂ Rn is any cube. Supposing σ > 1, by (3.5), and the condition (i) in Lemma 3.1, we
have ∫

Ω

|u− uQ|sws/ndx ≤
∑
Q∈V

∫
Q

|u− uQ|sws/ndx ≤ C1

∑
Q∈V

|Q|
(∫

Q

|du|nwdx

)s/n

≤ C1|Ω|
∑
Q∈V

(∫
σQ

|du|nwdx

)s/n

≤ C1|Ω|N
(∫

Ω

|du|nwdx

)s/n

= C2|Ω|
(∫

Ω

|du|nwdx

)s/n

.

Thus, we have (
1
|Ω|
∫

Ω

|u− uQ|sws/ndx

)1/s

≤ C3

(∫
Ω

|du|nwdx

)1/n

.

This completes the proof of Theorem 3.2.

Remarks (1) Since Ls(µ)-averaging domains reduce to Ls-averaging domains if w = 1 (so
dµ = w(x)dx = dx), then Theorem 3.1 also holds if Ω ⊂ Rn is an Ls-averaging domain. (2) In
[11] we proved that if Ω is a John domain and µ is a measure defined by dµ = w(x)dx, where
w ∈ Ar, then Ω is an Ls(µ)-averaging domain. Therefore, Theorem 3.1 is also true if Ω is a
John domain.
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